

Lesson Plan

Name of the Faculty	:	Mr. Pardeep			
Discipline	:	Mechanical Engineering			
Semester	:	3 rd			
Subject	:	Thermodynamics (PCC-ME- 213G)			
Lesson Plan Duration	:	15 Weeks (from Aug. 2020 to Nov. 2020)			
** Work Load (Lecture) per week (in hours): Lectures-02, Practicals-00					

Week	Theory		Practical		
	Lecture Topic		Practical	Торіс	
	Day	(including assignment/test)	day		
1^{st}	1^{st}	Fundamentals - System & Control		No Practical	
		volume; Property, State &			
		Process.			
	2^{nd}	Exact & Inexact differentials;			
		Work-Thermodynamic definition			
		of work; examples.			
2 nd	3 rd	Displacement work; Path			
		dependence of displacement			
		work and illustrations for simple			
		processes.			
	4 th	electrical, magnetic, gravitational, spring and shaft work.			
3 rd	5 th	Temperature, Definition of			
		thermal equilibrium and Zeroth			
		law.			
	6 th	Temperature scales; Various			
		Thermometers- Definition of			
		heat.			

4 th	7 th	examples of heat/work interaction in systems- First Law for Cyclic & Non-cyclic processes.	
	8 th	Concept of total energy E ; Demonstration that E is a property.	
5 th	9 th	Various modes of energy, Internal energy and Enthalpy.	
	10 th	Definition of Pure substance, Ideal Gases and ideal gas mixtures.	
6 th	11 th	Real gases and real gas mixtures.	
	12 th	Compressibility charts- Properties of two-phase systems - Const. temperature and Const. pressure heating of water.	
7 th	13 th	Definitions of saturated states; P- v-T surface.	
	14 th	Use of steam tables and R134a tables; Saturation tables; Superheated tables.	
8 th	15 th	Identification of states & determination of properties, Mollier's chart.	
	16 th	First Law for Flow Processes - Derivation of general energy equation for a control volume.	

9 th	17 th	Steady state steady flow	
		processes including throttling.	
	18 th	Examples of steady flow devices;	
		Unsteady processes.	
10 th	19 th	Examples of steady and unsteady	
		I law applications for system and	
		control volume.	
	20^{th}	Second law - Definitions of direct	
		and reverse heat engines.	
11 th	21 th	Definitions of thermal efficiency	
		and COP; Kelvin-Planck and	
		Clausius statements.	
	22 nd	Definition of reversible process;	
		Internal and external	
		irreversibility.	
12 th	23 nd	Carnot cycle; Absolute	
		temperature scale.	
	24 nd	Clausius inequality; Definition of	
		entropy S; Demonstration that	
		entropy S is a property.	
13 th	25 nd	Evaluation of S for solids, liquids,	
		ideal gases and ideal gas mixtures	
		undergoing various processes;	
		Determination of s from steam	
		tables.	
	26^{nd}	Principle of increase of entropy;	
		Illustration of processes in Ts	
		coordinates; Definition of	
		Isentropic efficiency for	
		compressors, turbines and	
	1	nozzles.	
14 th	27 nd	Irreversibility and Availability,	
		Availability function for systems	
		and Control volumes undergoing	
	acad	different processes, Lost work.	
	28 nd	Second law analysis for a control	
		volume. Exergy balance equation	
		and Exergy analysis.	

15 th	29 nd	Thermodynamic cycles - Basic Rankine cycle; Basic Brayton cycle	
	30 nd	Basic vapor compression cycle and comparison with Carnot cycle.	